- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Lopez_Alarcon, Sonia (3)
-
Crimmins, Aden (1)
-
Dumitrescu, Eugene (1)
-
Humble, Travis S (1)
-
Wong, Elaine (1)
-
Wrighter, Brody (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multiplication is a frequent computation in many algorithms, classical and quantum. This paper targets the implementation of quantum integer multiplication. Quantum array multipliers take inspiration from classical array multipliers, with the result of reduced circuit depth. They take advantage of the quantum phase domain, through rotations controlled by the multiplier’s qubits. This work further explores this implementation by applying approximate rotations. Although this approach can have an impact on the accuracy of the result, the reduction in depth can result in better outcomes when noise is involved.more » « less
-
Wrighter, Brody; Lopez_Alarcon, Sonia (, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE))Binary Neural Networks (BNNs) are the result of a simplification of network parameters in Artificial Neural Networks (ANNs). The computational complexity of training ANNs increases significantly as the size of the network increases. This complexity can be greatly reduced if the parameters of the network are binarized. Binarization, which is a one bit quantization, can also come with complications including error and information loss. The implementation of BNNs on quantum hardware could potentially provide a computational advantage over its classical counterpart. This is due to the fact that binarized parameters fit nicely to the nature of quantum hardware. Quantum superposition allows the network to be trained more efficiently, without using back propagation techniques, with the application of Grover’s Algorithm for the training process. This paper looks into two BNN designs that utilize only quantum hardware, as opposed to hybrid quantum-classical implementations. It also provides practical implementations for both of them. Looking into their scalability, improvements on the design are proposed to reduce complexity even further.more » « less
-
Lopez_Alarcon, Sonia; Wong, Elaine; Humble, Travis S; Dumitrescu, Eugene (, Computing in Science & Engineering)This article offers perspective on quantum computing programming languages, as well as their emerging runtimes and algorithmic modalities. With the scientific high-performance computing (HPC) community as a target audience, we describe the current state of the art in the field, and outline programming paradigms for scientific workflows. One take-home message is that there is significant work required to first refine the notion of the quantum processing unit in order to integrate in the HPC environments. Programming for today’s quantum computers is making significant strides toward modern HPC-compatible workflows, but key challenges still face the field.more » « less
An official website of the United States government
